ILLUSTRATED KEY TO THE FEMALE ANOPHELES OF SOUTHWESTERN ASIA AND EGYPT (DIPTERA: CULICIDAE)

JAYSON I. GLICK

Walter Reed Biosystematics Unit, Department of Entomology, Walter Reed Army Institute of Research, Washington, DC 20307-5100

ABSTRACT. An illustrated key for the identification of the female Anopheles mosquitoes of southwestern Asia and Egypt is presented. Thirty-nine species and three subspecies are treated, including 25 species and one subspecies of Anopheles (Cellia) and 14 species and two subspecies of Anopheles (Anopheles). A new species from Egypt of the subgenus Cellia closely related to Anopheles stephensi Liston is left unnamed. Anopheles (Anopheles) pseudopictus Grassi is removed from synonymy with Anopheles (Anopheles) hyrcanus (Pallas), and Anopheles (Anopheles) habibi Mulligan and Puri is recognized as a junior synonym of Anopheles (Anopheles) claviger (Meigen). Tables providing important taxonomic references and the geographic distribution for each species are included.

INTRODUCTION

An identification key for the Anopheles mosquitoes of the entire Southwest Asian Region has long been a necessity for entomologists dealing with malaria vectors. Published keys and species descriptions for the region are scattered throughout the literature, and are often limited in scope to the Anopheles species of a single country (Salem 1938, Egypt; Pringle 1954, Iraq; Abdel-Malek 1958, Syria; Shahgudian 1960, Iran; Postiglione et al. 1973, Turkey; Danilov 1985, Afghanistan) or limited geographical region such as the Arabian Peninsula (Mattingly and Knight 1956, Shidrawi and Gillies 1987) and the Indian Subregion (Christophers 1933). Many are now of limited value due to numerous nomenclatural changes and additions, and refinements in our ability to differentiate sibling species, and are ineffective for identification of Anopheles on a region-wide basis. Available keys for the Anopheles of the Palaearctic Region are similarly ineffective (Bates et al. 1949, Senevet and Andarelli 1955a, Russell et al. 1963).

This work began as a study of the Anopheles mosquitoes of the Arabian Peninsula, emphasizing the fauna of Saudi Arabia and Kuwait, and was expanded to include all of southwestern Asia as defined by Harbach (1988), and modified to include all land south of the Russian republics between the Mediterranean Sea and the Indus River of Pakistan, including all of Turkey and Egypt. The material examined came largely from the collections of the National Museum of Natural History, Smithsonian Institution, and the British Museum (Natural History). The Anopheles fauna of the Southwest Asian Region presently consists of 39 species and three subspecies, representing two subgenera. The majority of the species have Palaearctic affinities, while a smaller number are clearly more Ethiopian or Oriental in their distribution.

Two nomenclatural changes have been made for the An. (Anopheles) of the Southwest Asian Region. Anopheles (Ano.) pseudopictus Grassi is removed from synonymy with An. (Ano.) hyrcanus (Pallas) based on the apparent absence of evidence for its hybridization with An. hyrcanus in any part of its distribution, and the distinctness of material studied of both An. hyrcanus and An. pseudopictus.
from Turkey, Iran and Afghanistan. Bruce A. Harrison (personal communication) provided characters which clearly show An. (Ano.) habibi Mulligan and Puri to be a synonym of An. (Ano.) claviger (Meigen). In particular, the lower proepisternal setae (PeSL) are found only in An. habibi and An. claviger, and a closely related western Mediterranean species An. (Ano.) petragnani Del Vecchio. Comparison of the type female of An. habibi in the British Museum (Natural History) with An. claviger from Iraq and Israel showed no morphological differences between the two; comparison with An. claviger from France, Greece, Italy, Spain, Israel and Russia showed no statistical difference in the length of the wing petiole to the anterior forked cell between the two species as was stated in the correction to the original description of An. habibi (Mulligan and Puri 1936b); and comparison of the genitalia of An. habibi males from Quetta, Baluchistan (BM 1938-663/1413) with An. claviger males from Israel, Greece and England showed no salient differences. Anopheles habibi is therefore recognized as a junior synonym of An. claviger (NEW SYNONYMY).

The scope of this study includes the Anopheles fauna from portions of the North Eurasian, Mediterranean, Afro-Arabian (Desert), Afrotropical and Indo-Iranian malarial epidemiological zones as defined by Macdonald (1957). Primary malaria vectors in the Southwest Asian Region include An. (Cellia) arabiensis Patton, An. (Cel.) culicifacies Giles, An. (Cel.) flavitellis James, An. (Cel.) pharoensis Theobald, An. (Cel.) pulcherrimus Theobald, An. (Ano.) sacharovi Favre, An. (Cel.) sergentii (Theobald), An. (Cel.) stephensi Liston and An. (Cel.) superpictus Grassi. Secondary vectors include An. (Cel.) annularis Van der Wulp, An. (Cel.) cinereus Theobald, An. (Ano.) claviger and An. (Cel.) multicolor Cambouliu (White 1989, Zahar 1974). Although many of the primary vectors are important in malaria transmission over a widespread area of the region, several are of concern in more limited areas, including An. (Cel.) arabiensis in the Arabian Peninsula (Colbourne and Smith 1964, Sebai 1988, Zahar 1985), An. (Cel.) pharoensis in Egypt (Zahar 1974), and An. (Cel.) pulcherrimus in Afghanistan (Zahar 1974).

Indigenous malaria has been eliminated for the most part from Bahrain and Kuwait, where imported malaria is now the primary problem (Amin 1989, Hira et al. 1985). Anopheles (Cel.) stephensi and An. (Cel.) pulcherrimus are present in both countries and are known vectors in neighboring countries. In Iraq, primary malaria vectors presently include An. (Ano.) sacharovi, An. (Cel.) stephensi and An. (Cel.) superpictus (Abul-Hab and Al-Kassal 1986). Malaria eradication programs have reduced transmission in many areas of the Southwest Asian Region, while there has been a resurgence of malaria in others. Ramsdale and Haas (1978) reviewed the problems of resurgent malaria in southern and southeastern Turkey where An. (Ano.) sacharovi, An. (Cel.) superpictus and other species may be playing a role in transmission.

METHODS AND PRESENTATION

Morphological characters used here are based predominantly on previous usage in published literature. Harbach and Knight (1980) are followed for morphological terms and abbreviations, and wing spot characters and abbreviations are taken from the nomenclature used by Wilkerson and Peyton (1990).

In the key, morphological features are written out, followed by their abbreviation, to assist users. Specimens were examined at 20–120× magnification under blue-filtered tungsten light. Pure white was used as a reference for determining other colors according to the method of Peyton and Ramalingam (1988). Taxonomic notes are indicated in the key for certain species and presented in an “Explanation of Notes” section immediately following the key.

Table 1 is a taxonomic index to the Anopheles mosquitoes of southwestern Asia and Egypt, including a list of important taxonomic references for each species. Tables 2
Table 1. Taxonomic index and references for the *Anopheles* mosquitoes of southwestern Asia and Egypt.

<table>
<thead>
<tr>
<th>Taxon</th>
<th>Key couplet</th>
<th>Taxonomic references</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genus Anopheles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subgenus Anopheles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>algeriensis Theobald</td>
<td>2,27</td>
<td>Marshall (1938), Senevet and Andarelli (1955a)</td>
</tr>
<tr>
<td>claviger (Meigen)</td>
<td>28</td>
<td>Mulligan and Puri (1936a, 1936b), Marshall (1938), Ross and Roberts (1943), Torres Canamares (1945), Senevet and Andarelli (1955a, 1955b)</td>
</tr>
<tr>
<td>coustani Laveran</td>
<td>32</td>
<td>Evans (1938), de Meillon (1947), Senevet and Andarelli (1955a), Gillies and de Meillon (1968)</td>
</tr>
<tr>
<td>gigas similensis (James)</td>
<td>37</td>
<td>Christophers (1933), Reid (1968)</td>
</tr>
<tr>
<td>hyrcanus (Pallas)</td>
<td></td>
<td>Christophers (1933), Ross and Roberts (1943), Reid (1953), Gutsevich (1976)</td>
</tr>
<tr>
<td>lindesayi Giles</td>
<td>37</td>
<td>Christophers (1933), Reid (1968)</td>
</tr>
<tr>
<td>maculipennis Meigen</td>
<td>30</td>
<td>Hackett and Missiroli (1935), Marshall (1938), Bates (1940), Senevet and Andarelli (1955a), Rioux (1958), Gutsevich et al. (1974), White (1978)</td>
</tr>
<tr>
<td>marteri sogdianus Keshishian</td>
<td>31</td>
<td>Keshishian (1938), Shahgudian (1956)</td>
</tr>
<tr>
<td>martinius Shingarev</td>
<td>30</td>
<td>Hackett and Missiroli (1935), Bates (1940), White (1978)</td>
</tr>
<tr>
<td>nigerrimus Giles</td>
<td>38</td>
<td>Christophers (1933), Reid (1953, 1968), Harrison (1972), Harrison and Scanlon (1975)</td>
</tr>
<tr>
<td>peditaeniatus (Leicester)</td>
<td>38</td>
<td>Reid (1953, 1968), Harrison (1972), Harrison and Scanlon (1975)</td>
</tr>
<tr>
<td>plumbeus Stephens</td>
<td>32</td>
<td>Marshall (1938), Senevet and Andarelli (1955a)</td>
</tr>
<tr>
<td>pseudopictus Grassi</td>
<td>37</td>
<td>Dow (1953), Senevet and Andarelli (1955a)</td>
</tr>
<tr>
<td>sacharovi Favre</td>
<td>30</td>
<td>Hackett and Missiroli (1935), Bates (1940), Ross and Roberts (1943), Rioux (1958), White (1978)</td>
</tr>
<tr>
<td>subalpinus Hackett and Lewis</td>
<td>30</td>
<td>Hackett and Lewis (1935), Bates (1940), Rioux (1958), White (1978), Cianci et al. (1987)</td>
</tr>
<tr>
<td>tenebrosus Doenitz</td>
<td>35</td>
<td>Evans (1938), de Meillon (1947), Gillies and de Meillon (1968)</td>
</tr>
<tr>
<td>Subgenus Cellia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>annularis Van der Wulp</td>
<td>2,28</td>
<td>Christophers (1933), Ross and Roberts (1943), Bonne-Wepster and Swellengrebel (1953), Hara (1959), Reid (1968)</td>
</tr>
<tr>
<td>apoci Marsh</td>
<td>26</td>
<td>Marsh (1933)</td>
</tr>
</tbody>
</table>

Table 1 continues.
<table>
<thead>
<tr>
<th>Taxon</th>
<th>Key couplet</th>
<th>Taxonomic references</th>
</tr>
</thead>
<tbody>
<tr>
<td>arabiensis Patton</td>
<td>22</td>
<td>Evans (1938), de Meillon (1947), Senetev and Andarelli (1955a), Coluzzi (1964), Gillies and de Meillon (1968), Zahar et al. (1970), White (1975, 1985), Mattingly (1977)</td>
</tr>
<tr>
<td>azaniae Bailly-Choumara</td>
<td>9</td>
<td>Bailly-Choumara (1960), Gillies and de Meillon (1968)</td>
</tr>
<tr>
<td>cinereus Theobald</td>
<td>16</td>
<td>Evans (1938), de Meillon (1947), Senetev and Andarelli (1955a), Gillies and de Meillon (1968)</td>
</tr>
<tr>
<td>Culicifacies Complex</td>
<td>23</td>
<td>Christophers (1933), Evans (1938), Ross and Roberts (1943), de Meillon (1947), Bonne-Wepster and Swellengrebel (1953), Gillies and de Meillon (1968), Harrison (1980)</td>
</tr>
<tr>
<td>demeilloni Evans</td>
<td>25</td>
<td>Evans (1938), de Meillon (1947), Gillies and de Meillon (1968)</td>
</tr>
<tr>
<td>dthali Patton</td>
<td>13</td>
<td>Christophers (1933), Evans (1938), de Meillon (1947), Senetev and Andarelli (1955a), Gillies and de Meillon (1968)</td>
</tr>
<tr>
<td>fluviatilis James</td>
<td>25</td>
<td>Christophers (1933), Ross and Roberts (1943), Bonne-Wepster and Swellengrebel (1953)</td>
</tr>
<tr>
<td>maculatus Theobald</td>
<td>12</td>
<td>Christophers (1933), Ross and Roberts (1943), Bonne-Wepster and Swellengrebel (1953), Hara (1959), Reid (1968)</td>
</tr>
<tr>
<td>moghulensis Christophers</td>
<td>20</td>
<td>Christophers (1933)</td>
</tr>
<tr>
<td>multicolor Cambouliu</td>
<td>15</td>
<td>Christophers (1933), Evans (1938), Ross and Roberts (1943), de Meillon (1947), Senetev and Andarelli (1955a), Gillies and de Meillon (1968)</td>
</tr>
<tr>
<td>paltrinieri Shidrawi and Gillies</td>
<td>26</td>
<td>Shidrawi and Gillies (1987)</td>
</tr>
<tr>
<td>pharoensis Theobald</td>
<td>7</td>
<td>Evans (1938), Ross and Roberts (1943), de Meillon (1947), Senetev and Andarelli (1955a), Gillies and de Meillon (1968)</td>
</tr>
<tr>
<td>pretoriensis (Theobald)</td>
<td>11</td>
<td>Evans (1938), de Meillon (1947), Gillies and de Meillon (1968)</td>
</tr>
<tr>
<td>pulcherrimus Theobald</td>
<td>4</td>
<td>Christophers (1933), Gutsevich et al. (1974)</td>
</tr>
<tr>
<td>rhodesiensis rupicola Lewis</td>
<td>9,28</td>
<td>Evans (1938), de Meillon (1947), Senetev and Andarelli (1955a), Mattingly and Knight (1956), Gillies and de Meillon (1968)</td>
</tr>
<tr>
<td>sergentii (Theobald)</td>
<td>24</td>
<td>Christophers (1933), Senetev and Andarelli (1955a), Mattingly and Knight (1956)</td>
</tr>
<tr>
<td>splendidus Koidzumi</td>
<td>5</td>
<td>Christophers (1933), Bonne-Wepster and Swellengrebel (1953), Hara (1959)</td>
</tr>
</tbody>
</table>

Table 1 continues.
Table 1. Continued.

<table>
<thead>
<tr>
<th>Taxon</th>
<th>Key couplet</th>
<th>Taxonomic references</th>
</tr>
</thead>
<tbody>
<tr>
<td>squamosus Theobald</td>
<td>7</td>
<td>Evans (1938), de Meillon (1947), Gillies and de Meillon (1968)</td>
</tr>
<tr>
<td>stephensi Liston</td>
<td>19</td>
<td>Christophers (1933), Ross and Roberts (1943)</td>
</tr>
<tr>
<td>subpictus Grassi</td>
<td>22</td>
<td>Christophers (1933), Ross and Roberts (1943), Bonne-Wepster and Swellengrebel (1953), Hara (1959), Reid (1968)</td>
</tr>
<tr>
<td>superpictus Grassi</td>
<td>20</td>
<td>Christophers (1933), Ross and Roberts (1943), Bonne-Wepster and Swellengrebel (1953), Hara (1959), Reid (1968)</td>
</tr>
<tr>
<td>turkhudi Liston</td>
<td>16</td>
<td>Christophers (1933), Evans (1938), Saliternik and Theodor (1942), de Meillon (1947), Gillies and de Meillon (1968)</td>
</tr>
<tr>
<td>willmori (James)</td>
<td>12</td>
<td>Christophers (1933), Reid (1968)</td>
</tr>
<tr>
<td>n. sp.</td>
<td>19</td>
<td>B. A. Harrison, personal communication</td>
</tr>
</tbody>
</table>

Table 2. Distribution of *Anopheles (Anopheles)* in southwestern Asia and Egypt.

<table>
<thead>
<tr>
<th>Taxon</th>
<th>Afghanistan</th>
<th>Bahrain</th>
<th>Cyprus</th>
<th>Egypt</th>
<th>Iran</th>
<th>Iraq</th>
<th>Israel</th>
<th>Jordan</th>
<th>Kuwait</th>
<th>Lebanon</th>
<th>Oman</th>
<th>Pakistan</th>
<th>Qatar</th>
<th>Saudi Arabia</th>
<th>Syria</th>
<th>Turkey</th>
<th>U.A.E</th>
<th>Yemen</th>
</tr>
</thead>
<tbody>
<tr>
<td>algeriensis</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>claviger</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>coustani</td>
<td></td>
</tr>
<tr>
<td>gigas similensis</td>
<td></td>
</tr>
<tr>
<td>hyrcanus</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>lindesayi</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>maculipennis</td>
<td></td>
</tr>
<tr>
<td>marteri sogdianus</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>martinius</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>nigerrimus</td>
<td></td>
</tr>
<tr>
<td>peditaeniatus</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>plumbeus</td>
<td></td>
</tr>
<tr>
<td>pseudopictus</td>
<td></td>
</tr>
<tr>
<td>sacharovi</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>subalpinus</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>tenebrosus</td>
<td></td>
</tr>
</tbody>
</table>
Table 3. Distribution of *Anopheles* (*Cellia*) in southwestern Asia and Egypt.

<table>
<thead>
<tr>
<th>Species</th>
<th>Afghanistan</th>
<th>Bahrain</th>
<th>Cyprus</th>
<th>Egypt</th>
<th>Iran</th>
<th>Iraq</th>
<th>Israel</th>
<th>Jordan</th>
<th>Kuwait</th>
<th>Lebanon</th>
<th>Oman</th>
<th>Pakistan</th>
<th>Qatar</th>
<th>Saudi Arabia</th>
<th>Syria</th>
<th>Turkey</th>
<th>U.A.E</th>
<th>Yemen</th>
</tr>
</thead>
<tbody>
<tr>
<td>annularis</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>apoci</td>
<td></td>
</tr>
<tr>
<td>arabiensis</td>
<td></td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>azaniae</td>
<td></td>
<td></td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>cinereus</td>
<td></td>
<td>✔</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>culicifacies</td>
<td>✔</td>
<td></td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>demeilloni</td>
<td>✔</td>
<td></td>
<td>✔</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>dithali</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>fluviatilis</td>
<td>✔</td>
<td></td>
<td>✔</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>maculatus</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>moghulensis</td>
<td>✔</td>
<td></td>
<td>✔</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>multicolor</td>
<td>✔</td>
<td></td>
<td>✔</td>
</tr>
<tr>
<td>paltrinieri</td>
<td>✔</td>
<td></td>
<td>✔</td>
</tr>
<tr>
<td>pharoensis</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>pretoriensis</td>
<td>✔</td>
<td></td>
<td>✔</td>
</tr>
<tr>
<td>pulcherrimus</td>
<td>✔</td>
</tr>
<tr>
<td>rhodesiensis rupicola</td>
<td>✔</td>
</tr>
<tr>
<td>sergentii</td>
<td>✔</td>
</tr>
<tr>
<td>splendidus</td>
<td>✔</td>
<td></td>
<td>✔</td>
</tr>
<tr>
<td>squamosus</td>
<td>✔</td>
<td></td>
<td>✔</td>
</tr>
<tr>
<td>stephensi</td>
<td>✔</td>
</tr>
<tr>
<td>subpictus</td>
<td>✔</td>
<td></td>
<td>✔</td>
</tr>
<tr>
<td>superpictus</td>
<td>✔</td>
</tr>
<tr>
<td>turkhudi</td>
<td>✔</td>
</tr>
<tr>
<td>willmori</td>
<td>✔</td>
<td></td>
<td>✔</td>
</tr>
<tr>
<td>n. sp.</td>
<td>✔</td>
<td></td>
<td>✔</td>
</tr>
</tbody>
</table>

and 3 include the distribution for each species within the region. Figures 1 and 2 provide a summary of the majority of morphological terms and abbreviations used in the key (taken from Wilkerson and Strickman 1990, with modifications).
Fig. 1 (above). Female *Anopheles* mosquito, lateral view. Ap, antepronotum; C-I, forecoxa; C-II, midcoxa; C-III, hindcoxa; Clp, clypeus; Fe-I, forefemur; Fe-II, midfemur; Fe-III, hindfemur; Hl, halter; La, labellum; Mks, mesokatepisternum; Mm, mesepimeron; MPIp1-5, maxillary palpus, palpomeres 1-5; Mpn, mesopostnotum; MS, mesothoracic spiracle; Mts, metepisternum; Pa, paratergite; PA, postspiracular area; Ppn, postpronotum; Ps, proepisternum; S-I-VIII, sterna I-VIII; Scu, scutum; Stm, scutellum; Ta-III1-4, hindtarsomeres 1-5; Te-I-VIII, terga I-VIII; Ti-III, hindtibia; Tr-I, foretrochanter; Tr-II, midtrochanter; Tr-III, hindtrochanter.

Fig. 2 (below). Wing veins and crossveins of a female *Anopheles* mosquito. C, costa; CuA, cubitus anterior; h, humeral crossvein; M, media; M1, media-one; M1+2, media-one-plus-two; M2, media-two; M3+4, media-three-plus-four; mcu, mediocubital crossvein; R, radius; R1, radius-one; r1-r5, radial crossvein; R2, radius-two; R2+3, radius-two-plus-three; R3, radius-three; R4+5, radius-four-plus-five; R5, radial sector; Re, remigium; Sc, subcosta; sc-r, subcostal crossvein; 1A, anal vein.
KEY TO THE FEMALE ANOPHELES OF SOUTHWESTERN ASIA AND EGYPT

1. Wings with contrasting pale and dark spots, at least on costa (C), radius (R) and radius-one (R₁) (Fig. 3) 2
 - Wing entirely dark-scaled (Fig. 4) 26

Fig. 3. An. (Cel.) multicolor

2(1). Anterior margin of wing with at least 4 separate dark areas involving the costa (C), radius (R) and radius-one (R₁) (Fig. 5) 3
 - Anterior margin of wing with fewer than 4 separate dark areas involving the costa, radius and radius-one (Fig. 6) 33

Fig. 5. An. (Cel.) pulcherrimus

Fig. 6. An. (Ano.) hyrcanus

3(2). Hindtarsi 3–5 (Ta-III–v) pale (Fig. 7) 4
 - Hindtarsi 3–5 not entirely pale (Fig. 8) 6

Fig. 7. An. (Cel.) splendidus

Fig. 8. An. (Cel.) squamosus
4(3). Maxillary palpus (MP\textsubscript{lp}) with 4 pale bands (Fig. 9); abdominal terga densely covered with broad pale scales, and prominent posterolateral dark scale-tufts on all segments (Fig. 10) \textit{pulcherrimus} Theobald

Maxillary palpus with 3 pale bands (spots of pale scales may also be present) (Fig. 11); abdominal terga with narrow pale scales, and dark posterolateral or apical scales on distal segments only (Fig. 12) \textit{splendidus} Koidzumi

5(4). Maxillary palpus (MP\textsubscript{lp}) with 2 most apical pale bands broad and basal band more narrow (Fig. 13); palpomere 4 (MP\textsubscript{lp}4) pale at base and apex (Fig. 13); femora (Fe) and tibiae (Ti) with spots of pale scales (Fig. 14) \textit{splendidus} Koidzumi

Maxillary palpus with apical pale band broad and 2 most basal pale bands narrow (Fig. 15); palpomere 4 usually pale at apex only, occasionally with a few pale scales at base (Fig. 15); femora and tibiae without pale spots (Fig. 16) \textit{annularis} Van der Wulp

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure9.png}
\caption{An. (Cel.) \textit{pulcherrimus}}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure10.png}
\caption{An. (Cel.) \textit{splendidus}}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure11.png}
\caption{An. (Cel.) \textit{splendidus}}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure13.png}
\caption{An. (Cel.) \textit{splendidus}}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure14.png}
\caption{An. (Cel.) \textit{splendidus}}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure15.png}
\caption{An. (Cel.) \textit{annularis}}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure16.png}
\caption{An. (Cel.) \textit{annularis}}
\end{figure}
6(3). Maxillary palpus (MPlp) with 4 pale bands (Fig. 17); abdominal terga II-VII with posterolateral dark scale tufts (Fig. 18) 7

Maxillary palpus dark, or with at most 3 distinct pale bands (pale spots may also be present) (Fig. 19); abdominal terga II-VII without dark scale-tufts, although some posterolateral dark scales may be present on distal segments (Fig. 20) 8

Fig. 17.

An. (Cel.) pharoensis

Fig. 18.

Fig. 19.

An. (Cel.) pretoriensis

Fig. 20.

7(6). Hindtarsomeres 3 and 4 (Ta-III₃, ₃₄) pale over apical half, hindtarsomere 5 (Ta-III₅) entirely pale (Fig. 21); abdominal terga densely covered with broad pale scales (Fig. 22) *pharoensis* Theobald

Hindtarsomeres 3 and 4 pale at apex only, hindtarsomere 5 dark (Fig. 23); abdominal terga II-VII covered with moderately narrow dark scales (less dense than in *pharoensis*), and varying amounts of pale scales mesally and posteriorly, pale scales often confined to tergum II and some distal segments (Fig. 24); tergum VIII densely covered with broad pale scales, and with some broad dark scales posterolaterally and mesally (Fig. 24) *squamosus* Theobald

Fig. 21.

An. (Cel.) pharoensis

Fig. 22.

Fig. 23.

An. (Cel.) squamosus

Fig. 24.
8(6). Maxillary palpus (MPlp) dark (Fig. 25) ... 9
- Maxillary palpus with pale bands (pale spots may also be present) (Fig. 26) ... 10

9(8). Erect head scales broad, white on vertex (V) and dark brown laterally and posteriorly (Fig. 27) ... rhodesiensis rupicola Lewis (in part) (Note 1)
- Erect head scales narrow, straw-yellow throughout (Fig. 28) .. azaniae Bailly-Choumara

10(8). Hindtarsomere 5 (Ta-III₅) pale (Fig. 29) ... 11
- Hindtarsomere 5 dark (Fig. 30) ... 13
11(10). Hindtarsomere 4 (Ta-III) entirely pale (Fig. 31); abdominal terga without pale scales (Fig. 32) \textit{pretoriensis} (Theobald)

- Hindtarsomere 4 pale only at base and apex (Fig. 33); abdominal terga with pale scales on at least some distal segments (Fig. 34) \textit{willmori} James

12(11). Abdominal terga II-VIII largely covered with pale scales (Fig. 35); dark scales on posterolateral corners of terga VII and VIII, occasionally also on IV-VI (Fig. 35) \textit{willmori} James

- Abdominal terga usually with pale scales at most on segments V-VIII, occasionally tergum IV with a few pale scales posteriorly (Fig. 36); dark scales on posterolateral corners of terga VII and/or VIII, rarely also on VI (Fig. 36) \textit{maculatus} Theobald

13(10). Wing with pale spots confined to costa (C), radius (R) and radius-one (R,) (Fig. 37); erect head scales narrow, straw-yellow throughout (Fig. 38); scutum (Scu) with setae only, no scales (Fig. 39) \textit{dthali} Patton

- Wing with pale spots present on nearly all veins (Fig. 40); erect head scales broad, white on vertex (V) and dark brown laterally and posteriorly (Fig. 41); scutum with obvious pale scales in addition to setae (Fig. 42) \textit{maculatus} Theobald
Fig. 37.

An. (Cel.) dihali

Fig. 38.

14(13). Palpomere 5 (MPlp₃) dark at apex (Fig. 43) ... 15
- Palpomere 5 entirely pale (Fig. 44) ... 17
15(14). Scutal fossa (SF) covered with scattered pale scales (Fig. 45): base of costa (C) pale-scaled (Fig. 46) .. multicolor Cambouliu

Scutal fossa without scales, or at most a few scales present at extreme upper margin (Fig. 47): base of costa dark (Fig. 48) .. 16

Fig. 45. An. (Cel.) multicolor

Fig. 46.

Fig. 47. An. (Cel.) cinereus

16(15). Wing with well defined pale- and dark-scaled areas on all veins (Fig. 49): anal vein (1A) with 3 dark spots (Fig. 49) .. cinereus Theobald

Wing spots indistinct posterior to radius (R) and radius-one (R₁) (Fig. 50): anal vein with at most 2 indistinct dark spots, often appearing mostly dark-scaled (Fig. 50). turkhudi Liston (Note 2)

Fig. 49. An. (Cel.) cinereus

Fig. 50. An. (Cel.) turkhudi
17(14). Scutum (Scu) with broad pale scales on median area (Fig. 51); upper proepisternal setae (PeSU) (Note 3) absent (Fig. 52) .. 18
- Scutum with narrow pale scales on median area (Fig. 53); upper proepisternal setae present (Fig. 54) ... 21

Fig. 51.
An. (Cel.) stephensi

Fig. 52.

Fig. 53.
An. (Cel.) arabiensis

Fig. 54.

18(17). Femora (Fe) and tibiae (Ti) spotted with pale scales (Fig. 55); abdominal terga II-VIII largely covered with pale scales (Fig. 56) .. 19
- Femora and tibiae not spotted (Fig. 57); abdominal terga without pale scales (Fig. 58) 20

Fig. 55.
An. (Cel.) stephensi

Fig. 56.
An. (Cel.) stephensi

Fig. 57.
An. (Cel.) superpictus

Fig. 58.
19(18). Anal vein (1A) with 3 dark spots (Fig. 59); scutal fossa (SF) covered with scattered pale scales (Fig. 60); abdominal sterna V-VIII usually with pale scales (Fig. 61) stephensi Liston

- Anal vein with at most 2 small poorly defined dark spots, one just past midlength and the other near apex, or appearing entirely pale-scaled (Fig. 62); scutal fossa with pale scales only at upper margin (Fig. 63); abdominal sterna usually without pale scales, or at most with pale scales on sternum VIII, rarely a few scales on VII (Fig. 64) n. sp. (Note 4)

Fig. 59. An. (Cel.) stephensi

Fig. 60.

Fig. 61.

Fig. 62. An. (Cel.) n. sp.

Fig. 63.

Fig. 64.

20(18). Anal vein (1A) with 3 dark spots (Fig. 65) moghulensis Christophers

- Anal vein with 2 dark spots, distal spot long (Fig. 66) superpictus Grassi
21(17). Scutal fossa (SF) covered with scattered pale scales (Fig. 67); hindtarsomeres 3 and 4 (Ta-III) pale at apex (Fig. 68) ... 22

- Scutal fossa without scales (Fig. 69); hindtarsomeres 3 and 4 entirely dark (Fig. 70) .. 23
22(21). Femora (Fe) and tibiae (Ti) with spots of pale scales (Fig. 71); anal vein (1A) usually with 3 dark spots (Fig. 72); radius (R) usually with distinct preaccessory sector dark (PASD) spot (Note 5) (Fig. 72) .

- Femora and tibiae not spotted (Fig. 73); anal vein with 2 dark spots (Fig. 74); radius usually without preaccessory sector dark spot (Fig. 74) .

\[\text{arabiensis } \text{Patton}\]

\[\text{subpictus } \text{Grassi}\]

23(21). Radius (R) with a dark spot just distal to humeral crossvein (h) (Fig. 75); wing fringe usually with 1–2 inconspicuous pale spots on posterior margin, rarely more (Fig. 75) .

- Radius without basal dark spot just distal to humeral crossvein (Fig. 76); wing fringe usually with at least 4 pale spots on posterior margin (Fig. 76) .

\[\text{culicifacies}\]

24(23). Radius-four-plus-five (R4+5) dark-scaled except at base and apex, occasionally with some pale scales in distal area (Fig. 77) .

- Radius-four-plus-five with a distinct, large median pale area (Fig. 78) .

\[\text{sergentii } \text{Theobald}\]
25(24). Radius (R) with preaccessory sector dark (PASD) spot (Fig. 79) demeilloni Evans
- Radius without preaccessory sector dark spot (Fig. 80) ... fluviatilis James

26(1). Erect head scales narrow, straw-yellow throughout (Fig. 81) Anopheles (Cellia) (in part)
.. apoci Marsh and paltrinieri Shidrawi and Gillies (Note 7)
Erect head scales broad, white on vertex (V) and dark brown laterally and posteriorly (Fig. 82), or dark brown throughout (Fig. 83) ... 27
27(26). Scutum (Scu) without pale scales on median area (Fig. 84) 28
- Scutum with narrow (Fig. 85) to moderately broad (Fig. 86) pale scales on median area

...

Anopheles (Anopheles) (in part) 29

Fig. 84. An. (Ano.) algeriensis

Fig. 85. An. (Ano.) maculipennis

Fig. 86. An. (Ano.) plumbeus

28(27). Erect head scales white on vertex (V), dark brown laterally and posteriorly (Fig. 87)
...

Anopheles (Cellia) rhodesiensis rupicola Lewis (in part)
- Erect head scales dark brown throughout (Fig. 88) Anopheles (Anopheles) algeriensis Theobald

Fig. 87. An. (Cel.) rhodesiensis rupicola

Fig. 88. An. (Ano.) algeriensis

29(27). Wing scales darker and more dense at crossveins and furcations, forming dark spots (Fig. 89) Maculipennis Complex (Note 8) 30
- Wing scales uniformly distributed, dark spots inapparent (Fig. 90) .. 31
30(29). Wing with distinct dark spots (Fig. 91); scutum (Scu) dark brown (Fig. 92); scutal fossa (SF) usually with narrow, piliform pale scales, at least on extreme upper margin (Fig. 92) .. maculipennis Meigen and subalpinus Hackett and Lewis (Note 9)

- Wing spots usually less distinct (Fig. 93); scutum pale brown (Fig. 94); scutal fossa without pale scales (Fig. 94) .. martinius Shingarev and sacharovi Favre (Note 10)
31(29). Labellum (La) distinctly paler than remainder of proboscis (P) (Fig. 95). ... marteri sogdianus Keshishian (Note 11)
- Labellum not paler than remainder of proboscis (Fig. 96) .. 32

32(31). Scutum (Scu) with very narrow, piliform pale scales on median area (Fig. 97); lower proepisternal setae (PeSL) (Note 12) present (Fig. 98); palpomere 5 (MPlp5) not longer than 0.50 length of palpomere 4 (MPlp4) (Fig. 99) ... claviger (Meigen)
- Scutum with narrow to moderately broad, spatulate pale scales on median area (Fig. 100); lower proepisternal setae absent (Fig. 101); palpomere 5 longer than 0.50 length of palpomere 4 (Fig. 102) .. plumbeus Stephens
33(2). Basolateral area of clypeus (Clp) with a patch of dark laterally projecting scales (Fig. 103) 34
- Clypeus without scales (Fig. 104) .. 39

34(33). Hindtarsomeres 4 and 5 (Ta-III₄,₅) entirely pale (Fig. 105) ... 35
- Hindtarsomeres 4 and 5 not entirely pale (Fig. 106) ... 36

35(34). Hindtarsomere 1 (Ta-III₁) broadly pale at base and apex, hindtarsomere 2 (Ta-III₂) pale over approximately apical half, hindtarsomere 3 (Ta-III₃) dark at base only or entirely pale (Fig. 107); abdominal sternum VII with a group of posteromedian dark scales (Fig. 108) ... constani Laveran
- Hindtarsomeres 1 and 2 narrowly pale at apex only, hindtarsomere 3 pale over apical third to two-thirds (Fig. 109); abdominal sternum VII with or without posteromedian dark scales (Fig. 110) ... tenebrosus Doenitz (Note 13)
36(34). Hindtarsomere 4 (Ta-III₄) pale at apex only or entirely pale, hindtarsomere 5 (Ta-III₅) dark (Fig. 111) 37

- Hindtarsomere 4 usually pale at base and apex, hindtarsomere 5 entirely dark or pale at base only (Fig. 112) ... 38

37(36). Hindtarsomere 4 (Ta-III₄) pale at apex only (Fig. 113) ... hyrcanus (Pallas)

- Hindtarsomere 4 entirely pale (Fig. 114) ... pseudopictus Grassi

38(36). Humeral crossvein (h) with patch of dark scales (Fig. 115); remigium (Re) mostly dark-scaled (Fig. 115); pale markings on hindtarsomeres 4 and 5 (Ta-III₄,5) variable, often without basal pale bands (Fig. 116) ... nigerrimus Giles (Note 14)

- Humeral crossvein without scales (Fig. 117); remigium mostly pale-scaled (Fig. 117); hindtarsomere 4 and usually 5 with basal pale bands (Fig. 118) ... peditaeniatus (Leicester)
J. Margalit (personal communication) has identified the subspecies An. (Ano.) lindesayi as a separate taxonomic unit within the Anopheles gambiae complex. The presence of this species in the study area highlights the importance of understanding the geographic distribution and ecological niche of mosquito species in dائمخلعوس اهذوقلا. The identification of An. (Ano.) lindesayi in the study area also underscores the need for continued surveillance and monitoring of mosquito species, particularly in areas with historical records of malaria transmission.
sonal communication) feels that the status of An. turkhudi telamali as a valid subspecies may be in doubt.

3. The upper proepisternal setae (PeSU) occur in a group above the forecoxae on the upper part of the proepisternum.

4. The dark spots on the anal vein (1A) of An. (Cel.) n. sp. may be reduced to the point that the entire vein appears pale-scaled. However, the species can be separated from An. stephensi by the combination of the reduction in pale scales on the scutal fossa (SF), and the reduction or absence of pale scales on the abdominal sterna.

5. The preaccessory sector dark (PASD) spot is defined as the isolated group of dark scales occurring on the radius (R) before the splitting of radius-one (R₁) and the radial sector (Rₛ), and located between the sector pale (SP) and accessory sector pale (ASP) spots. The PASD is equivalent to the sector dark (SD) spot of Wilkerson and Peyton (1990), as illustrated in their Figure 1 for the condition where the ASP is present on the costa (C), subcosta (Sc) and R, thereby producing SD spots on all three veins. The typical condition for the presence of the isolated PASD spot on the R in Southwest Asian Cellia is the absence of the ASP spots and the fusing of the SD spots on the C and Sc.

6. Anopheles (Cel.) culicifacies has been found to be a complex of four sibling species (designated species A, B, C and D), distinguishable only by fixed chromosomal inversions. Species A has been identified from an urban area on the border between Oman and the United Arab Emirates by Akoh et al. (1984) and from Sistan and Baluchistan Province, Iran by Zaim and Javaherian (1991). Species A and B have been detected in Punjab Province, Pakistan (Mahmood et al. 1984).

7. Adult females of An. (Cel.) apoci and An. (Cel.) paltrinierii cannot be distinguished except for the morphology of the pharyngeal armature. Males of An. paltrinierii can be separated by the absence of leaflets on the aedeagus (Shidrawi and Gillies 1987).

8. In southwestern Asia the Maculipennis Complex is represented by at least four sibling species, including An. maculipennis, An. martinius, An. sacharovi and An. subalpinus. Identifications of the species are best accomplished by characters of the eggs or by differences in chromosomal inversions (White 1978).

9. Anopheles (Ano.) maculipennis and An. subalpinus can be distinguished by the intercostal membrane of the egg float, which is rough in An. maculipennis and smooth in An. subalpinus, and by chromosomal inversion differences. Anopheles subalpinus is known to occur with certainty only in Iran, Iraq, Syria and Turkey. Postiglione et al. (1970) found An. subalpinus in Turkey, suggesting that previous records of An. messeae Falleroni may also be An. subalpinus. White (1978) shows the geographic distribution of An. messeae falling short of the Southwest Asian Region. The presence of An. melanoon Hackett in Turkey requires confirmation.

10. Anopheles martinius and An. sacharovi can be distinguished by the fixed paracentric inversions of their polytene chromosomes (White 1978).

11. Ribeiro et al. (1985) collected An. (Ano.) marteri Senevet and Prunelle in northeastern Portugal, and after reviewing its geographical distribution, bioecology and taxonomy from the literature, determined that An. (Ano.) marteri sogdianus is a junior synonym of An. marteri, and that An. marteri is a polymorphic, monotypic species. However, based on their conclusions concerning the distribution of subspecies and expected morphological divergence of subspecies, An. marteri sogdianus will be treated as a valid subspecies in this study.

12. The lower proepisternal setae (PeSL) occur individually or as a group mesad of the forecoxae and below the upper proepisternal setae (PeSU) on the lower part of the proepisternum.

13. The posteromedian dark scales of abdominal sternum VII in An. (Ano.) tenebrosus were occasionally absent in specimens from Egypt, Israel and Saudi Arabia. However, the pale banding of hindtarsomeres 1–3 is a reliable character for distinguishing An. tenebrosus from An. constanti.
14. The adults of *An. (Ano.) nigerrimus* are generally similar to *An. peditaeniatus*, and apparently the extent of pale banding on the hindtarsomeres is often variable. See Harrison and Scanlon (1975) for a discussion of characters which help to separate the two species. Early records of *An. nigerrimus* from Pakistan may be *An. peditaeniatus* (B.A. Harrison, personal communication).

ACKNOWLEDGMENTS

The author is grateful to Ralph E. Harbach, E.L. Peyton, Ronald A. Ward and Richard C. Wilkerson, Walter Reed Army Institute of Research (WRAIR), for their helpful comments and review of the manuscript; Bruce A. Harrison, National Research Council, for access to his extensive notes and reprint files, and for his helpful comments and review of the manuscript; Deborah Feher for preparing the illustrations; and Taina Litwak, WRAIR, for assistance in preparing the manuscript for publication.

REFERENCES CITED

Gutsevich, A.V., A.S. Monchadskii and A.A.

